首页> 外文OA文献 >Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries
【2h】

Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries

机译:锂离子电池阳极的轻量自由站立式碳纳米管-硅膜

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Silicon is an attractive alloy-type anode material because of its highest known capacity (4200 mAh/g). However, lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300%, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Si nanostructures such as nanowires, which are chemically and electrically bonded to the current collector, can overcome the pulverization problem, however, the heavy metal current collectors in these systems are larger in weight than Si active material. Herein we report a novel anode structure free of heavy metal current collectors by integrating a flexible, conductive carbon nanotube (CNT) network into a Si anode. The composite film is free-standing and has a structure similar to the steel bar reinforced concrete, where the infiltrated CNT network functions as both mechanical support and electrical conductor and Si as a high capacity anode material for Li-ion battery. Such free-standing film has a low sheet resistance of ∼30 Ohm/sq. It shows a high specific charge storage capacity (∼2000 mAh/g) and a good cycling life, superior to pure sputtered-on silicon films with similar thicknesses. Scanning electron micrographs show that Si is still connected by the CNT network even when small breaking or cracks appear in the film after cycling. The film can also "ripple up" to release the strain of a large volume change during lithium intercalation. The conductive composite film can function as both anode active material and current collector. It offers ∼10 times improvement in specific capacity compared with widely used graphite/copper anode sheets. © 2010 American Chemical Society.
机译:硅是一种有吸引力的合金型阳极材料,因为它的已知容量最高(4200 mAh / g)。然而,锂插入硅中或从硅中抽出伴随着巨大的体积变化,最大可达300%,这会在硅上引起强烈的应变,并且由于部分硅与电流之间的电接触损失而导致粉化和快速的容量衰减。集电极。化学和电结合到集电器的诸如纳米线的Si纳米结构可以克服粉碎问题,但是,这些系统中的重金属集电器的重量大于Si活性材料。本文中,我们通过将柔性导电碳纳米管(CNT)网络集成到Si阳极中,报告了一种不含重金属集电器的新型阳极结构。该复合膜是自支撑的,具有类似于钢筋混凝土的结构,其中渗透的CNT网络既充当机械支撑和导电体,又将Si用作锂离子电池的高容量负极材料。这种自支撑膜具有约30 Ohm / sq的低薄层电阻。它显示出高的比电荷存储容量(〜2000 mAh / g)和良好的循环寿命,优于具有类似厚度的纯溅射硅膜。扫描电子显微镜照片显示,即使在循环后膜中出现小的破裂或裂纹,Si仍通过CNT网络连接。该膜还可以“波纹”以释放锂嵌入过程中大体积变化的应变。导电复合膜可同时充当负极活性材料和集电器。与广泛使用的石墨/铜阳极板相比,它的比容量提高了约10倍。 ©2010美国化学学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号